Potential of Soil-Aquifer-Treatment in Contaminant Removal and Groundwater Recharge – Gujarat Experience

S.K. Gupta Physical Research Laboratory (PRL) Ahmedabad

ECOSYSTEMS AND HUMAN WELL-BEING

In a very fundamental sense, ecosystems are the planet's lifesupport systems for the humans and for all other forms of life. **Ecosystem** services are

indispensable to the well-being of all people, everywhere in the world. ²

Important Ecosystem Services

Through numerous biological, chemical, and physical processes Ecosystems provide important Services

Provisioning:

□ Products/ goods obtained from ecosystems (e.g. food, water, feed, fibre, fuel, pharmaceutical products, and wildlife)

Supporting:

Services needed for the production of all other ecosystem services (e.g. nutrient cycling)

Regulating:

Benefits obtained from regulation of ecosystems (e.g.climate regulation and water purification)

3

Cultural:

Non-material benefits obtained from ecosystems (e.g. cultural heritage)

Many goods pass through markets, but other services rarely do.

Millennium Ecosystem Assessment, 2005

- 1. Most ecosystem (~60%) are being degraded or used unsustainably.
- 2. Direct drivers of change in ecosystems are: habitat change (land use change and physical modification of rivers or water withdrawal from rivers), overexploitation, invasive alien species, pollution, and climate change.
- 3. Indirect drivers are: population change, change in economic activity, socio-political factors, cultural factors, and technological change.
- 4. There is established but incomplete evidence that changes being made in ecosystems are increasing the likelihood of nonlinear changes that have important consequences for human well-being.
- 5. Lack of knowledge and information about different aspects of ecosystems constrain effective management of ecosystems. ⁴

Drivers of Change in Ecosystems: Indian Context

- ~16% of global population on ~2.4% terrestrial area of Earth.
- Population will increase by >40% by 2050.
- Aspire to become a developed nation by 2020.
- Requirements of food production, industrial & mining products, water & energy sources, various services including disposal of waste products etc necessitate massive development of infrastructure involving imports, redeployment/ alterations of natural resources.
- As a consequence, our ecosystems will have to be highly managed and engineered.

Rapid Urbanisation and Industrialisation Requires

Pollution watchdogs to

- Ensure appropriate treatment and disposal of industrial and domestic waste
- Monitor and prevent the loading of pollutants in atmosphere, soil and water
- Investigate the movement and mixing of natural (Arsenic, fluoride and salinity etc.) and anthropogenic pollutants from point sources (industrial or urban agglomeration) and
- Offer the guidelines and solutions that can protect the environment and also sustain the development.

Selected Constituents in Domestic wastewater

Constituent	Typical Conc. ¹	Approximate contribution and source		
		Black water	Grey Water	
Wastewater	100-200 lit/person/d	24-45% Toilet	55-75% Kitchen, bath, laundry	
Carbon Organic C Inorganic C	20-200 12-24	50-70% -	30-50% Some Detergents	
Chloride	20-50	30-70% Salt	30-70% Salt, Some bleaches	
Nitrogen (Org. N and NH ₄ ⁺)	20-60	70-90% Urea and proteins	10-30% NH ₄ ⁺ salts in cleaners	
Phosphorous	7-15	Nucleic acid and ATP	Detergents and dish soaps	
Potassium	7-15	60-80%	20-40%	
Sodium	40-80	20-50% Salt	50-80% Salts in cleaning products	
Sulphur	5-10	20-40% Proteins	60-80% Detergents	

¹ All quantities reported in mg/litre, except for water flow rate. From Wilhelm et al (1994)

Soil-Aquifer-Treatment (SAT) or Geo-purification systems

- Planned water reuse is important in water deficit areas where sewage effluent is an important water resource and also where stream or other water resources need to be protected.
- Comprise three principal facilities (i) infiltration basins; (ii) series of pumping (production) wells; (iii) series of observation wells.

SCHEMATIC OF THE PILOT SCHEME FOR WASTEWATER RENOVATION THROUGH SOIL AQUIFER TREATMENT (SAT) IN SABARMATI RIVERBED

Basin under flooding. Inflow Primary Treated waste water

Basin under drying

SAT Renovated Water

Ahmedabad SAT experiment: Performance in respect of COD, BOD, SS, TKN and NH₂-N

Ahmedabad SAT Results

Parameter	Influent (mg/l)	Effluent (mg/l)	
BOD	100	8-10	
COD	230	14-24	
SS	110	12-18	
TKN	40	22	
Total Phosphate	6	0.2	
Bacteria (FC)	3 x 10 ⁶ (MPN)	72 (MPN)	
Viruses	44 (MPN)	~Nil (MPN)	

The limit of SS concentration for optimal total infiltration (output) using primary effluent was found 30 – 35 mg/l as against 10 mg/l reported by Rice (1974) using secondary effluent.

System operated at an average HLR of 0.08 m/day (30 m/yr.) 12

Cost analysis of SAT system vis-à-vis other conventional wastewater treatment systems (System capacity: 55 MLD)

Treatment System	Capital Cost	O & M cost	Total annualised Cost (TAC)	Unit Cost	Cost Ratio (TAC) wrt SAT
	(Rs. Lacs)			(Rs. /m³)	
ASP (Conv.)	1,434	519	754	3.75	1.4
ASP (EA)	1,462	668	908	4.52	1.7
AFFR	1,557	386	641	1.92	1.2
SAT	1,450	296	553	1.50	

SCHEMATIC OF RIVERBED SAT WASTEWATER RENOVATION AND RIVERFRONT DEVELOPMENT SYSTEM FOR AHMEDABAD

Renovation and Recharge of Grey Water

Pritamnagar Akhada Road

Schematic arrangement of Percolation and Observation Wells (Not to Scale)

Percolation and observation wells for recharge of grey water at Smrutisuman Apartments, Ahmedabad¹⁶

Akshaydhara, the solution!

- The Akshaydhara is an environmentally sustainable alternative system for managing urban water supply and sanitation.
- The key element of Akshaydhara is the manipulation of shallow (<20m deep) soilaquifer system to effect renovation of storm- and domestic waste- water and its subsequent transmission to surface water bodies through natural subsurface flow thereby maintaining their pristine quality perennially.

Akshaydhara components

- Soil-aquifer-treatment systems using infiltration basins;
- Percolation wells;
- Local networks for supply of renovated wastewater for non-potable applications;
- Local networks of small bore sewers for wastewater disposal into centralised low capacity systems.
- Several experimental initiatives have been undertaken in the last decade in Ahmedabad to validate the *Akshaydhara* concept. 18

A SYSTEM FOR TOTAL WATER MANAGEMENT

New Tools for Monitoring Environmental Impacts and Warning Signals

- 1. Isotopic tracers in conjunction with other chemical analyses and flow path modelling can help determine origin, movement, mixing and flushing of various pollutants particularly in soils and ground waters.
- 2. Even the limited application of stable isotopes of oxygen (δ^{18} O) and hydrogen (δ D) can help in accurately estimating the travel time for pollutants through surface and subsurface pathways.
- 3. Offering such information can be vital for planning and setting up the industrial units at appropriate locations and in prediction of the chemical impacts of the non-point source pollutants.

Books on Pollution Investigations Using Isotopes

Application of Isotope Techniques to Investigate Groundwater Pollution

Proceedings of a final Research Co-ordination Meeting held in Vienna, 2-5 December 1997. 16 papers. IAEA-TECDOC-1046, Vienna, 1998, 262 pages.

Nuclear Techniques in the Study of Pollutant Transport in the Environment. Interactions of Solutes with Geological Media (Methodological Aspects) Final reports of a Co-ordinated Research Programme (1987-1992).

12 papers. IAEA-TECDOC-713 Vienna, 1993, 343 pages.

Isotope Ratios as Pollutant Source and Behaviour Indicators Proceedings of a symposium held in Vienna, November 18-22, 1974. 34 papers. **STI/PUB/382 Vienna, 1975, 489 pages.**

IWIN - Task Organisation

Thanks...

A paradigm shift

Indiscriminate consumption

Highly subsidised regime

Centralised systems of water supply and sewerage.

Govt. responsibility

Common treatment for grey and dark water

Primary and secondary Sewage treatment and discharge in streams.

Restricted and judicious consumption

Moderately subsidised cost of water. Users pay excessively for extravagant consumption

Decentralised systems: Rainwater harvesting and Infiltration structures

Community participation

Separate handling of grey and dark water

Soil Aquifer Treatment after conventional sewage treatment and subsequent reuse.

Strong legal compulsion favoring conservation, renovation and reuse

Artificial Recharge Experiment - Ahmedabad

Artificial Groundwater Recharge Setup at Balisana Village, North Gujarat

SCHEMATIC SKETCH (NOT TO SCALE)

Variation of Groundwater Recharge

Change of fluoride concentration during recharge experiments

Schematic Water Retention Diagram

