Assessing Health Impacts Of Using Wastewater In Urban and Peri-Urban Agriculture- A Case Study of the Musi River, Hyderabad, Andhra Pradesh

> IWMI-India Saba Ishaq

> > www.iwmi.org

- Mandate of IWMI South Asia under which the impact of WW reuse on health is being looked into
- Musi river Hyderabad is of interest
- What is the rationale behind using waste water
- What are the negative effect of using WW
- What IWMI's research intends to do.

Theme

Agriculture, Water and Cities

Making an asset out of wastewater Maximizing the benefits and reducing the risks of waste water use in agriculture – A Research Initiative of IWMI

www.iwmi.org

To Improve livelihoods of Urban and Periurban farmers through safe, productive and sustainable use of urban waste water for irrigation.

www.iwmi.org

Objective

To develop pragmatic approaches for

- Wastewater using farmers
- Policy Makers
- Planners
- Local Authorities
- Consumers

in Urban and Peri- Urban areas that will optimize the overall benefits of wastewater irrigation and Minimize the risks to Human health

www.iwmi.org

Hyderabad

- -Geographical Area : More than 500 sq km
- -Population : 7 million
- -Urban Population Growth Rate : 17.2 %
- -Percentage of city sewered: 62 %
- Amount of wastewater released: 700 mld
- Amount of wastewater treated: 133 mld (113 & 20)

Musi River Water is Polluted

Industrial waste

mi.org

Hyderabad City

Periurban

Water Quality in the Musi River

+40 Km

Musi River Wastewater Use Scenario 2002-2005

Musi water and livelihoods

Vegetables

2500 ha Para grass for Livestock

10,000 ha Paddy Rice

www.iwmi.org

Waste water use in agriculture – A need but Risky Business

 Untreated wastewater is a need-used by poor and low income group in for food security in the twin cities

Threat to Health and Environment

www.iwmi.org

- Wastewater from Musi-a critical resource to semiarid drought prone zone -920 hectares of land under wastewater cultivation.
- Available year round for irrigation
- Most affordable source of Irrigation for poor and migrant farmers
- Water intensive crops like vegetable can be grown in dry season as well.

- Source of nutrition for crops
- Reduces the cost on use of artificial fertilizers
- Frees up high value freshwater (surface and ground) for other purposes.

- Health risk to the irrigators on prolonged contact with waste water
- Health risk to the consumers (Blumenthal: 2001 Shuval: 1989) 556-mg/kg for Zn and 281 mg/kg for Cu way above european standards
- Contamination of surface water and ground water : Zn and Cu levels 10 times higher
- Builds up chemical pollutant in the soil (heavy metal)
- A breeding ground for vectors and parasites

- Intestinal worm infections
- Diarrhea (Protozoa & Microbial Infections)
- Vector borne diseases
- Growth Retardation (Children)
 Workdays and school days lost
 Cost of Medication

Health Implications

• The WHO, has ranked the risk of pathogens found in untreated and partially treated wastewater in the following descending order:

helminth infections, protozoa/bacteria and viruses with viruses posing almost negligible risk

 Helminth infections are mainly due to: Ascaris lumbricoides (roundworm), Trichuris trichiura (whipworm), Ancylostoma duodenale and Nector americanus (hookworms).

- Non existence of any previous study on health impacts of waste water use along the Musi.
- There was great gap existing and study were required to find out which community is greater risk
- Study on the supply chain was also needed
- Some study by Sehgal and Mahajan (1991) looked into Giardia infection (study indicated very minute increase from regular farmers

- Shrivastva and Pandey (1986) found three fold increase in the hook worm infection among the barefoot farmers as compared to those wearing boots in the field.
- Shuval's study shows 3.5 and 2.1 fold increase in the round worm and also hook worm in waste water using farmers

- Skin rashes have been mentioned among the farmers during summer months, fever mosquito bites and joint pains are the other complaints.
- Health officer do not visit them and they rely on the local medical shop for treatment.

- Large scale study began in 2003 after a pilot study was conducted in 2002.
- The pilot study indicated that the pathogen reduces as the river flows down to the Rural zones
- Pilot study done on farmers indicated little or no intestinal problem or Diarrhea

Current Research

 Ensuring Health and Food Safety from Rapidly Expanding Wastewater Irrigation in South Asia – BMZ project

www.iwmi.org

BMZ Project

To propose a risk assessment framework for human health impacts along the wastewater use chain from source (field/producer) to end-user (market/consumer).

www.iwmi.org

Health Risks - Transmission Pathways

www.iwmi.org

BMZ Project

Attempt to implement interventions that would improve the well being of wastewater farmers and contribute towards improved livelihoods.

www.iwmi.org

Water Quality Test taken up

- Pathogenic organisms (Intestinal nematode eggs and *E.coli*
- Dissolved Oxygen (DO)
- Biochemical Oxygen Demand (BOD)
- Salinity
- Dissolved Nitrogen
- Other heavy metals like Cu and Zn
- Pesticide levels

www.iwmi.org

Helminths of primary concern (WHO) Hookworm: Why?

Prevalence of Helminth Infections (%) Vs Helminth Eggs in Musi River Water (Eggs / Litre)

Figure A. Prevalence of Helminth Infection (%) in farmers utilizing Musi River water for irrigation **Figure B.** Total Helminth Egg Count in Musi River at selected sampling locations (Eggs/Litre)

Source: Jeroen Ensink (IWMI)

www.iwmi.org

Sediment Sampling

Mean egg load per 1 kg of sediment: 410,000 (SD: 240,000)

Key Conclusions

- Use of untreated wastewater for irrigation in urban and periurban agriculture is a reality in Hyderabad
- This practice has negative effects on the health and environment, but also makes significant contributions to the economy through employment opportunities for the urban poor
- The challenge is to identify options that minimize the negative effects of this practice without jeopardizing its benefits
- Action planning and policy design which engage multiple local stakeholders can help to identify and ensure the implementation of such options

www.iwmi.org

Thank You

www.iwmi.org