RESEARCH, MONITORING AND REGULATORY STRETEGIES TO DEAL WITH EMERGING CHEMICAL CONTAMINANTS IN DRINKING WATER

DR. KRISHNA GOPAL SCIENTIST & HEAD AQUATIC TOXICOLOGY DIVISION

INDUSTRIAL TOXICOLOGY RESEARCH CENTRE POST BOX 80, M. G. MARG LUCKNOW - 226001, U.P. INDIA

Aquatic Toxicology – A Multidisciplinary Science

Socioeconomic Impact

An estimated 90% of the country's water resources are polluted with untreated industrial and domestic wastes, pesticides, fertilizers and geogenic chemicals. (www.teriin.org/energy/water.htm).

➢ Diarrhoel disease kills 6,000 children's every day apart from millions who are debilitated because of water born diseases which hinder their education and impair their ability to a decent livelihood in the future. (*Business India, December, 2003*)

Socioeconomic impact (losses) due to environmental degradation have been grossly underestimated, sometimes due to lack of adequate data or due to ignoring the Varity of health issues completely.

Test characteristics for Drinking Waters is-10500: 1991

S. No.	Substance Characteristic	Requirement	Undesirable effect outside the desirable limit	Permissible limit**
Α	Essential Character	ristics		
1	Colour,			
	Hazen units, Max	5	Above 5, consumer	25
			acceptance decreases	
2	Odour	Unobjectionabl	le -	-
3	Taste	Agreeable	- 1111	-
4	Turbidity			
	NTU Max	5	Above 5, consumer	10
			acceptance decreases	
5	pH Value	6.5 to 8.5	Beyond this range	No
			the water will effect the	relaxation
			mucous membrane	
			and /or water supply syste	em
6	Total Hardness			
	(as CaCO ₃) mg/l, Ma	ax 300	Encrustations in water su	pply 600
			structure and adverse effe	ect
			on domestic use	
7	Iron (as Fe) mg/1 M		Boyond this limit tasta /an	\mathbf{r}
	11011 (as 1 ⁻ C), 111g/1, 1V	lax 0.5	are affected has adverse at	fect on domestic uses
		an	and were supply structures and p	romotes iron bacteria

8	Chlorides (as Cl), mg/l, Max	250	Beyond this limit taste, corrosion and palatability are affected	1000
9	Residual free chlorine. Mg/l, Minimum	0.2	-	
B	Desirable Characteristics			
1	Dissolved solids, mg/l, Max	500	Beyond this palatability decreases and may cause Gastrointestinal irritation	2000
2	Calcium (as Ca) mg/l, Max	75	Encrustation's in water supply structure and adverse effect on domestic use	200
3	Copper (as Cu), mg/l, Max	1.5	Astringent taste, discoloration and corrosion of pipes, fitting and utensils will be caused beyond this	1.5
4	Manganese (as Mn) mg/l, Max	0.1	Beyond this limit, taste/appearance are affected, has adverse effect on domestic use and water supply structure	0.3
5	Sulphates (as SO4), mg/1, Max	400	Beyond this causes Gastro intestinal irritation when magnesium or sodium are present	400
6	Fluorides (as F), mg/l, Max	1.0	Fluoride may be kept as low as possible. High fluoride may cause fluorosis	1.5

7_	Phenolic compounds			
	$(as C_6H_5OH),mg/l, Max$	0.001	Beyond this, the water becomes toxic	.002
8	Mercury (as Hg).			
	mg/l. Max	0.001	Beyond this, the water becomes toxic	No relaxation
9	Cadmium (as Cd).			
	mg/1, Max	0.01	Beyond this, the water becomes toxic	No relaxation
10	Selenium (as Se),			
	mg/l, Max	0.05	Beyond this, the water becomes toxic	No relaxation
11	Arsenic (as As),			
	mg/l, Max	0.2	Beyond this, the water becomes toxic	No relaxation
12	Cyanides (as CN),			
	mg/l, Max	0.05	Beyond this, the water becomes toxic	No relaxation
13	Lead (as Pb),			
	mg/l, Max	0.1	Beyond this, the water becomes toxic	No relaxation
14	Zinc (as Zn),	_		
	mg/l, Max	5	Beyond this limit, it can cause	1.5
15			astringent taste and an opalescence in w	vater 15
15	Anionic detergents	0.2	Devend this limit, it can serve a light	
	(as MBAS), mg/1, Max	0.2	froth in water	1.0
16	Chromium (as Cr6+)		Hour in water	1.0
10	mg/l Max	0.05	May be carcinogenic above this limit	No relevation
	111 <u>7</u> /1, 1VIAA	0.05	way be caremogenic above this infint	

17	Polynuclear aromatic			
	hydrocarbons (as PAH),			
	mg/l, Max	-	May be carcinogenic	-
18	Mineral oil, mg/l, Max	0.01	Beyond this limit, undesirable	
			taste and odour after	
			chlorination take place	0.03
19	Pesticide, mg/l, Max	Absent	Toxic	0.001
20	Alpha emitters, µc/mg,			
	Max	-		0.1
21	Beta emitters, µc/ml, Max	-	-	1
22	Alkalinity mg/l, Max	200	Beyond this limit taste becomes	
			unpleasant	600
23	Aluminum (as Al) mg/l, Max	0.03	Cumulative effect is reported to	
			cause dementia	0.2
24	Boron mg/l, Max	1	-	5
* De	sirable limit			

** In absence of alternate source

Chemical contaminants in water an associated health hazards

1.	Nitrates	Forms nitrosamines which may cause gastric cancer,
		Methemoglobinemia
2.	Fluorides	fluorosis, skeletal damage
3.	Arsenic	Nervous system disorders, cardiovascular effects, carcinogenicity
4.	Cadmium	Itai-Itai disease, kindly dysfunction, hypertension, nervous system
		disorders, cancer.
5.	Chromium	Ulceration
6.	Copper	Hepatic and nervous system disorders
7.	Lead	Abdominal colic, anemia, nervous system disorders, teratogenic and
		fetotoxic effects.
8.	Manganese	Nervous system disorders
9.	Mercury	Nervous system disorders, kidney damage, mutagenicity and
		teratogenicity
10.	Iron	Hemosiderosis, hemachromatosis skin pigmentation, hepatic
	disorders	
11.	Halogenated	Carcinogenicity
	By Products	

General pathways of biotransformation of xenobiotics in living organisms

Transformation of chemical in the Environment

Transformation of chemicals in the environment can also occur by abiotic processes. The most important abiotic transformation processes can be divided into four separate categories:

•Hydrolysis: Alteration of the chemical structure by direct reaction with water.

•*Oxidation*: A transformation process in which electrons are transferred from the chemical to a species accepting the electrons; the oxidant.

•*Reduction*: The reverse of oxidation; electron transfer takes place from a reductant to t6he chemical to be reduced.

•Photochemical degradation: Transformation due to interaction with sunlight.

Transformation and mineralization processes can alter the physicochemical and toxicological properties and reduced exposure concentrations of chemicals which had been released in the environment. Where biotransformation is carried out by higher organism, the formation of polar transformation products (metabolites) can also provide an important method of detoxification.

A Biotic Transformation Processes

Some examples of hydrolytically unstable chemicals and the products formed by hydrolysis (R, R, R " represents an aromatic ring or aliphatic chain and X is a halogen atom)

RESEARCH AND MONITORING STRATEGIES

Salinity (Inland)	
Maharashtra	Amravati, Akola
Bihar	Begusarai
Haryana	Karnal
Rajasthan	Barmer, Jaisalmer, Bharatpur, Jaipur, Nagaur, Jalore & Sirohi
U.P.	Mathura
Salinity (Coastal)	
Andhra Pradesh	Vishakapatnam

	(Ibilanap a difaili
Orissa	Puri, Cuttak, Balasore
West Bengal	Haldai & 24 Pargana
Gujarat	Junagarh, Kachch, Varahi, Banskanta & Surat

Flouride (BIS Desirable Limit is 1.0 mg/L; Max. Permissible Limit is 1.5 mg/L)

Kerala	Palaghat Krishna, Ananipur, Nellor, Chittoor.
Andhra Pradesh	Cuddapah, Guntur and Nalgonda
Gujarat	Banskanta, Kachch & Amreli
Haryana	Hissar, Kaithal & Gurgaon
Orissa	Bolangir, Bijapur, Bhubaneshwar and Kalahandi
Punjab	Amritsar, Bhatinda, Faridkot, Ludhiana & Sangrur
Rajasthan	Nagaur, Pali, Sirohi, Ajmer & Bikaner
Tamil Nadu	Chengalput, Madurai
U.P.	Unnao, Agra, Aligarh, Mathura, Ghaziabad, Meerut & Rai Barail

Maganese	
Orissa	Bhubaneshwar, Athgaon
U.P	Muradabad, Basti, Rampur & Unnao

Iron (BIS Desirable Limit: 0.3 mg/L, Max. Permissible: 1.0 mg/L)

U.P.	Mirjapur
Assam	Darrang, Jorhat, Kamrup
Orissa	Bhubaneshwar (Max. 49.0 mg/L)
Bihar	E. Champaran, Muzaffarpur, Gaya, Manger, Deoghar & Madubani
Rajasthan	Bikaner, Alwar, Bharatpur
Tripura	Dharmnagar, Kailasanar, Ambasa, Amarpur, & Agartala
West Bengal	Madnipur, Howrah, Hoogly and Bankura

Zinc

Andhra Pradesh	Hyderabad, Osmania University campus
Delhi	R.K. Puram
Rajasthan	Udaipur

Arsenic (BIS limit is 0.05 mg/L with no relaxation)

West Bengal	Malda, Murshidabad, Nadia, Pargana (Max. 2.95mg/L)
Bihar	Bhojpur
Chhattisgarh	Rajanangaon
Uttar Predesh	Ballia, Lakhimpur Khiri

Bihar	Patna, East Champaran, Palamu, Gaya, Nalanda, Nawada and Banka
Andhra Pradesh	Vishakapatnam, East Godvari, Krishna, Prakasam, Nellor, Chittoor, Anantpur,
	Cuddapah & Kurnool
Delhi	Naraina, Shehadr (Blocks)
Haryana	Ambala, Sonepat, Jind, Gurgaon, Faridabad & Hissar
Himachal Pradesh	Kulu, Solan, Una
Karnataka	Bidar, Gulbarge and Bijapur
Madhya Pradesh	Sehore (Maximum 2100 mg/L), Bhopal & (West & Central Part of state)
Maharashtra	Jalna, Beed Nanded, Latur, Osmanabad, Solapur Satara, Sangli and Kolhapur
Punjab	Patiala, Faridkot, Firozpur, Sangrur & Bhatinda
Rajasthan	Jaipur, Churu, Ganganagar, Bikaner, Jalore, Barmer, Bundi and Sawaimadhopur
Tamil Nadu	Coimbatore, Penyar and Salem
West Bengal	Uttar Dinajpur, Malda, Birbhum, Murshidabad, Nadia, Bankura and Purulia.

Nitrate (BIS Desirable Limit is < 45 mg/L; Max. Permissible is 100 mg/L)

Sulphide

Orissa

Balasore, Cuttak & Puri

Chromium

Punjab Uttar Pradesh Ludhiana Kanpur

Summarized information of the occurrence of <u>*Heavy Metals*</u> in ground water in India

State	District	Heavy Metals
Assam	Digbai	Fe, Mn, Ni, Zn, Cd, Cr, Pb
Andhra Pradesh	Anantpur, Prakasam,	
	Mahaboobnagar, Cuddapah,	Mo, Zn, Pb, As, Cd, Fe, Cu, Hg, Mn
	Nalagonda	
Bihar	Dhanbad, Kosi, Burhi-Gandak	Fe, Mn, Cr, Zn, Cu, Hg, Cd
Haryana	Faridabad	Cu, Pb, Zn, Cr, Cd, Fe, Mn, Ni
HP	Purwanoo, Kala Amb	Cd, Pb, Fe, Mn
Karnataka	Bhadravathi	Zn, Mn
Madhya Pradesh	Bastar, Karba, Ratlam, Nagda	Fe, Ce, Cr, Cu, Pb, Hg
Orissa	Angul, Talchur	Cu, Cr, Fe, Cd, Pb
Punjab	Ludhiana, Mandi, Gobindgarh	Cu, Cr, Zn, Fe, Pb, Cd
Rajasthan	Pali, Udaipur	Pb, Zn, Fe, Mn, Cd, Co, Mo, Ag, Cu
Famil Nadu	Manali, North Arcot	Hg, Ni, Cd, Cu, Zn, Pb, Fe, Mn
Uttar Pradesh	Basti , Varanasi, Kanpur,	
	Allahabad, Aligarh, Jaunpur	Pb, Cd, Cu, Zn, Cr, Fe, Mn, Hg
West Bangal	Durgapur, Howrah, Nadia,	
	Murshidabad	Fe, Mn, Ni, Zn, Cd, Cr, Pb

Summarized information of the occurrence of *fluoride* in ground water in India

State	Name of	Number of	Range of fluoride
	District	villages	(mg/l)
		surveyed	
Gujarat	Mehsana	127	1.58-9.9
Jammu & Kashmir	Doda	7	0.05-4.21
Maharasthra	Jalgaon	10	0.11-30
Maharashtra	Bhandara	7	1.5-10.2
Uttar Pradesh	Unnao	10	0.12-19.0
Karnataka	Dharwad	44	0.40-18.0
Karnataka	Gulbarga	33	0.2-5.6
Karnataka	Raichur	147	0.4-8.5
Haryana	Gurgaon	26	0.17-24.2
Madhya Pradesh	Shivpuri & Jabua	a 11	1.5-4.2

Summarized information of the occurrence of *nitrate* in ground water in India

State	Max. Nitrate, mg/L	District
Andhra Pradesh	1490	Parkasam
Assam	22	Lakhimpur
Bihar	440	Gaya
Delhi	1600	Shadra
Gujrat	560	Gujrat
Haryana	1310	Sirsa
Himachal Pradesh	176	Una
Jammu & Kashmir	460	Jammu
Karnataka	900	Mandya
Kerala	200	Palghat
Madhya Pradesh	2100	Sehore
Maharashtra	948	Nagpur
Orissa	800	Ganjam
Punjab	900	Sangrur
Rajasthan	1910	Jaipur
Tamil Nadu	1600	Salem
UP	840	Hamirpur
West Bengal	331	Purlia

Arsenic crisis in India and Bangladesh

Location	Years of exposure	Estimated Nos. People exposed (million	% Percent with skinlesion s)	Arsenic Concn. In water μg/L
Bangladesh	1970-present	18-22	33.6	10-2000
India				
West Bengal	1978-1996	>1	20	10-3700
Uttar Pradesh	Understudy	-		> permissible limit
Standard Limits	: Current USEPA drinking water re	and World Health O espectively in case o	rganisation limits are f ARSENIC.	e 10 and 50 μg/l for

Halogenated by products formed by chlorination^a

Oxidation by products	Concentrations	b, μg/liter
	Median	Maximum
Trihalomethane		
Chloroform	25	240
Bromodichloromethane	9.5	90
Chlorodibrommethane	1.6	36
Bromoform	<0.2	7.1
Haloacetic acids		
Dichloroacetic acid	15	74
Trichloroaceitic acid	11	85
Bromochloroacetic acid	3.2	49
Monochloroacetic acid	1.3	5.8
Dibromoacetic acid	<0.5	7.4
Monobromoacetic acid	<05	1.7
Tribromoacetic acid	-	_
Bromodichloroacetic acid	-	
Chlorodibromoacetic acid	-	-

^aStudies have primarily focused on surface water systems where high DBPS would be expected. Median and ^bmaximum concentrations vary widely depending on the chemical/time/source of sampling.

Chlorination byproducts and its health effects

Class of DBPs	Compounds	Health effects
Trihalomethanes (THM)	Chloroform	Cancer, liver, kidney and reproductive
		effects
	Dibromochloromethane	Nervous system, liver, kidney and reproductive effects
	Bromodichloromethane	Cancer, liver, kidney and reproductive effects
	Bromoform	Cancer, liver, kidney and reproductive effects
Haloacetonitrile (HAN) Halogenated aldehydes and Ketones	Trichloroacetonitrile Formaldehyde	Cancer, mutagenic and clastogenic effects Mutagenic
Halophenol	2-Chlorophenol	Cancer, tumor promoter
Haloacetic acids (HAA)	Dichloroacetic acid	Cancer, reproductive and developmental effects

Average consumption World	on of <u>Pesticides</u> in Selected Countries of
Country	Consumption in g/ha
Taiwan	17,000
Japan	12,000
Europe	3,000
USA	2,500
Argentina	960
Mexico	750
India	570
Africa	127
Ref: Bami,H.L. Pesticide risk a	an overview of Indian Sceen:Pesticide Information 18(3): 4-

7, 1992.

Arsenic Removal

Fluoride Removal

Sorbents for the removal of Arsenic and Fluoride

(Ad1)	(AdRS17)
(Ad5)	(AdS24)
(Ad6)	(AdS31)
(Ad7)	(AdA134)
(Ad8)	

s of Adsorbents (Kinetic

Types of Adsorbents (Kinetic studies)

Sorbents for the removal of heavy metal

(Abm1)	(Abm7)
(Abm4)	(Abm8)
(Abm5)	(Abm9)
(Abm6)	

Sorbents for the removal of Nitrate (AbN1) (AbN2) (AbN3) (AbN4)

A comparison of silver ionization vis a vis other conventional water

Infection methods Parameters		Silver	Chlorination
		Ionizatio	on
Harmful to eyes?)	No	Yes
Irritating to skin?		No	Yes
Bleaches hair?		No	Yes
Explosive, unsaf	e? No	Yes	
Dangerous to sto	ore? No	Yes	
Corrosive to pipe	lines? No	Yes	
Evaporates?		No	Yes
Toxic to landsca	ping? No	Yes	
Unpleasant sme	I? No	Yes	
Linked to cancer	?	No	Yes
Toxic to lungs?		No	Yes
Requires mainte	nance?	No	Yes
Forms trihalome	thanes	No	Yes
Forms chloramin	652	No	Yes

Centre of Excellence National Advanced Centre for Water Quality Assurance

THANKS

aler

AF TELEVISION

Tella