Water Safety Plans for developing countries

Dr Roisin Rooney

Water and Sanitation

WHO SEARO

Conference on Health and Environment March 24-25 2006, New Delhi, India

Outline of talk

- Background information on Water Safety Plans
- Limitations of traditional inspection and testing
- Risk management and WHO guidelines
- Example of implementing a Water Safety Plan

Water safety plans

- Developed by the water industry, international experts and WHO
- Designed to assess risks and identify ways in which risks can be managed
- Based on Hazard Analysis Critical Control Point (HACCP) model

Traditional approach limitations

- Relies heavily on end product testing
- Wide range of parameters that could be monitored
- Not technically feasible
- Indicator organisms e.g. E coli, coliforms, provide a common measure of potential risk - do not correlate well with risks from protozoa and viruses Water, Sanitation and Heal

Water sampling – limitations

- Promotes reactive management corrective actions are initiated after monitoring reveals that the water quality is unsatisfactory.
- Monitoring uninformative about the exact nature, location and timing of problem

Risk management

- Trend over past 10 years
- Good quality management systems
- Australians incorporated Hazard Analysis Critical Control Point (HACCP) into drinking water guidelines in 2002
- Harmonization of risk management approaches across water and food exposure routes is logical

Third Edition of the WHO Guidelines on Drinking-water quality

Guidelines for Drinking-water Quality

Tribut Landston

- Departure from previous editions
- Place emphasis on risk assessment and risk management
- Less emphasis on analysis of water quality

Guidelines – 5 key steps for water safety

- Health based targets
- System assessment
- Operational monitoring of the control measures in the supply chain
- Management plans
- A system of independent surveillance that verifies that the above are operating properly.

Water Safety framework

- First undertaken by the health sector
- 2-4 typically the responsibility of water supply agencies
- Final component form the basis of regulation

Similar approaches

- Australian risk management framework
- New Zealand Public Health Risk management plan
- Developing countries Uganda, India, Bangladesh, Maldives
- European Union (EU) preferred approach

Basis of a Water Safety Plan

- Document and describe system
- Undertake hazard assessment
- Identify control measures
- Define monitoring for control measures
- Implement corrective actions normal and incident conditions
- Verification
- Documentation

Example of implementation

- Maldives
- Water quality deteriorated after tsunami

 Rainwater harvesting kits provided

Document and describe system

- Flow diagram to identify routes of potential contamination
- Water source, water treatment, distribution, storage.

Hazard assessment

- Chemical e.g. chemicals from roof
- Biological e.g. protozoa e.g. *toxoplasma gondii* cysts from cats
- Physical debris from birds nest

Hazardous events

- Rainfall insufficient, biofilm in tank,
- Faecal contamination of roof by vermin and birds
- Leaching of chemicals from roof materials
- Chemical contamination of water by air pollution, contaminated buckets
- Tank breeding site for mosquitoes

Control measures

- Control measure are any activities that can reduce levels of hazards within water either by preventing entry or reducing contamination
- Need to prioritize control measures
- Protection of water and treatment

Process Step	Hazardous Event	Hazard Type	Control Measures Current and/or Planned
Rainwater tank	Contaminationoftankfromcontaminatedwaterin first flush	Microbial	First-flush diversion system used to divert first rainwater away from tank
	Ingress of contaminated water through tank or tank base	Microbial	Tank must have a cover and be in good structural condition; base to be protected by proper drainage to prevent undercutting
	Rainwater collection tank becomes a breeding site for mosquitoes	Biological	Ensure vents have mosquito meshing in good condition
	Contamination of stored water through use of buckets to withdraw water	Microbial	Ensure tank has a tap as the outlet for water from the tank Water, Sanitation and Heal 17

Monitoring of control measures

- Sanitary surveys condition of guttering etc
- Integrity of filters
- Turbidity
- Chlorine residual

Corrective action

- Backup disinfection
- Change to alternative water source
- Structural repairs
- Reporting to Maldives Water and Sanitation Authority (MWSA)

Verification

- Audit of Water Safety Plans
- Water quality tests

Testing schedule - Risk assessment matrix

Source of Water	Six monthly tests	Monthly tests	Microbiol.	Chemical
Rainwater from community tanks/ schools	Chemical	Micro	Total and faecal coliform	Chlorides Nitrates Ammonia Phosphates EC/TDS
Rain water from domestic houses (designated locations)	Chemical	Micro	Total and faecal coliform Wa	Chlorides Nitrates Ammonia Phosphates ater, Sanifation and Heal

Documentation

- Training of Community Health Workers
- Water Safety Plan records
- Sanitary surveys
- Water quality tests

Advantages of Water safety Plans

- Systematic assessment
- Minimize the chance of failure
- Contingency plans for unforeseen events
- Greater involvement of staff/ community
- Aid inspection by regulatory authorities
- More effective use of resources

Conclusion

- Water safety plans are "risk management tools" based on the Hazardous Analysis Critical Control Model (HACCP) model developed by the food industry
- New WHO Guidelines place emphasis on risk assessment and risk management
- Water Safety Plans have been implemented in a number of countries

Thank You!

Let us act together for Safe Environments and Sustainable Human Health!