Health Risk Associated with Chemicals used in

Water Treatment

Neeta Thacker Scientist

National Environmental Engineering Research Institute, Nagpur

Water Treatment Process

Coagulants used in water treatment

Name	Advantages	Disadvantages		
Aluminum	Easy to handle and apply; most	Adds dissolved solids (salts) to wa-		
Sulfate	commonly used; produces less	ter; effective over a limited pH		
(Alum)	sludge than lime; most effective	range.		
	between pH 6.5 and 7.5			
A12(SO ₄) ₃ .18H ₂ O				
Sodium	Effective in hard waters; small dos-	Often used with alum; high cost;		
Aluminate	ages usually needed	ineffective in soft waters		
Na ₂ Al ₂ O ₄				
Polyaluminum Chloride (PAC)	In some applications, floc formed is	Not commonly used; little full scale		
	more dense and faster settling than	data compared to other aluminum		
Al ₁₃ (OH) ₂₀ (SO ₄) ₂ .Cl ₁₅	alum	derivatives		
Ferric Sulfate	Effective between pH 4–6 and 8.8–	Adds dissolved solids (salts) to wa-		
	9.2	ter; usually need to add alkalinity		
$Fe_2(SO_4)_3$				
Ferric Chloride	Effective between pH 4 and 11	Adds dissolved solids (salts) to wa-		
		ter; consumes twice as much alka-		
FeCl ₃ .6H ₂ O		linity as alum		
Ferrous	Not as pH sensitive as lime	Adds dissolved solids (salts) to wa-		
Sulfate		ter; usually need to add alkalinity		
(Copperas)				
FeSO ₄ .7H ₂ O				
Lime	Commonly used; very effective;	Very pH dependent; produces large		
	may not add salts to effluent	quantities of sludge; overdose can		
Ca(OH) ₂		result in poor effluent quality		

Non-conventional vs. Conventional Coagulants

Conventional Coagulants (Alum, Ferric Chloride, lime)

- Greater volume of sludge
- Sludge contains more amount of water
- More amount of alkaline chemicals is needed
- Amount of TDS generated is more
- More carryover of iron or aluminium

Non-Conventional (Polyelectrolytes)

- 50 to 90% reduction in sludge.
- Sludge contains less amount of water
- Less amount of alkaline chemicals needed
- Do not add to total dissolved solids
- Carryover soluble- iron or aluminium.

Humans – # Skin irritant # Effects respiratory tract (IARC 1985). # Neurotoxicant

Increase in mortality of animals, birds & growth retardant in plants.

Humans: Chromosomal aberrations, dominant lethality, sister chromatid exchanges and unscheduled DNA synthesis in various in

Health effects of Polyacrylamide

Developmental disorders in aquatic life

Humans: Ingestion of contaminated drinking water has causes drowsiness, disturbances of balance, confusion, memory loss, and hallucinations (HSDB 1994).

Formation of Halogenated compounds in Water

Mechanism of Haloform Reaction

লী

General reaction of THMs formation

Chlorine + Precursor → Chloroform (+ other THMs)

Natural Organic Material (NOM) consisting of humic & fulvic acids is the principal precursor of THMs formation in most water & represents the major portion of TOC

CHCI, + Other Disinfection By-products

Prominent Trihalomethanes (THMs) in Water

	2 Br
H – C – CI	H – C – CI
I	I
CI	CI
CHCI ₃	CHBrCl ₂
Trichloromethane	Bromodichloro-
(Chloroform)	methane
3 Br	4 Br
I	I
H – C – CI	H – C – Br
I	I
Br	Br
CHBr ₂ Cl	CHBr ₃
Dibromochloro-	Tribromomethane
methane	(Bromoform)

Trihalomethane Formation Potential in Treated Water

Mumba

Goa

Chlooroform
Bromodichloromethane
Dibromochloromethane
Bromoform

Seasonal Variation in Trihalomethane Formation Potential in Treated Water at Mumbai

Seasonal Variation inTrihalomethane Formation Potential in

THM formation potential at various water treatment plants at Delhi during 2000-2005

Effect of Polyaluminium Chloride (PAC) on THMs Formation in water treatment plant

Instantaneous Trihalomethane (Inst.THMS) in Final Water of a Treatment Plant at Mumbai (µgL⁻¹)

Sample Details	Chloroform	BDCM	CDBM	Bromoform	TTHMs*
Sample (Alum)	ND	ND	ND	ND	ND
Sample (Alum + PAC)	ND	ND	ND	0.093	0.093
WHO GVs (μ gL⁻¹)	200	60	100	100	-

Trihalomethane Formation Potential (TFP) in Final Water of a Treatment Plant at Mumbai (µgL⁻¹)

Sample Details	Chloroform	BDCM	CDBM	Bromoform	TFP as $CHCI_3$
Sample (Alum)	2.937	ND	ND	0.009	2.941
Sample (Alum +PAC)	2.986	ND	ND	0.026	2.99
WHO GVs_(μ gL⁻¹)	200	60	100	100	

ND: Not detectable BDCM Bromodichloromethane CDBM Chlorodibromomethane * Total Trihalomethanes

Management Strategy for Reducing Trihalomethane Formation

- The use of non-THM generating disinfectants or alteration of the present method of chlorination
 - Ozonation, chlorine dioxide and chloramines as alternative disinfectants
- Removal or reduction of the precursors prior to chlorination
 - Aeration and ozonation conventional treatment
- Removal of the THMs after formation
 - Conventional treatment
 - Coagulation and flocculation
 - adsorption
 - aeration and adsorption
 - Non conventional treatment
 - Photocatalytic method

Use of Alternative Disinfectants

Ozonation

Advantage

- Excellent biocide
- Biocidal activity not affected by pH of the water
- THMs will not be formed

Disadvantage

- It does not produce a disinfectant residual
- The health hazards of the by-products of the reaction of ozone with organic matter is not known
- Organics in water become more biodegradable and thus can results in higher microbiological activity in the distribution system

Use of Alternative Disinfectants

Chlorine Dioxide

Advantage

- Good biocidal activity
- It can be generated and feed readily
- It produces residual that can persist through the distribution system

Disadvantage

- It results in to the formation of chlorite and chlorate
- USEPA has recommended the maximum permissible level for the sum of residuals of chlorine dioxide, chlorite and chlorate in the drinking water as 0.5 mg/L

Use of Alternative Disinfectants

Chloramine (Combined chlorine residual)

Advantage

- Easy to generate, feed and produce a persistent residual
- Chloramines are weaker action biocides and the activity is reduced when pH of water is high because of monochloramine formation which is favoured over dichloramine

Disadvantage

Chloramines are suspected carcinogens

Removal of THMs by Conventional and Non-Conventional Treatment Process

(Initial Conc.: 50-350 ug/L)

					Remova	ul %			
SI.	THMs	Conventiona	*					Non-	conventional
		Coagulation A		dsorption		Aer	ation	Pho	otolysis
No	Chemical	Alum	GAC		PAC	Tray- type	Cascade Aerator 12 L/min	Solar + H ₂ O ₂	UV + H ₂ O ₂
	Dose (μgL⁻¹)	50	Indigenous	Imported	250 mg/L	Flow 1- 5 L/min			(200 nm + 0.1%) H ₂ O ₂
1	Chlorofor m	38	49	78	79	95	87	60	100
2	BDCM	38	68	92	84	97	93	72	100
3	CDBM	52	70	93	90	93	89	38	100
4	Bromofor m	60	74.5	100	92	77	86	42	100
Cor rai	Initial ncentration nge (µg/L)	50 – 200		68.4 - 209.3	78.4 _ 204.3	70.6 – 263.5	173.6	200	45 min

1 Bromodichlorochloromethane

2 Chlorodibromomethane

Ref: Thacker et.al, Int. Jour. of Env. Moni. & Ass., 2005;

Thacker et.al., Int. Jour. of Pest., People & Nature, 2000

Effect of UV radiation on removal of trihalomethanes

- Initial Concentration: 200 μgL⁻¹
- Contact time: 70 mins
- * Removal:100 % 46%

- Initial Concentration: 50 μgL⁻¹
- * Contact time: 70 mins
- * Removal: 98 % 34%

Removal of 92-100% with UV radiation (83 W) in conjugation with H₂O₂ (0.1%) and 90 mins of contact time

Effect of UV irradiations on removal of trihalomethanes

Ref: Thacker et.al, Int. Jour. of Env. Moni. & Ass., 2005

Trihalomethane Removal by Cascade Aerator

*Initial conc.: 112.4-370.6 μg/L

Flowrate: 12.5L/min

★Average percentage removal : 56 – 67% .

Test Water		Chloroform (μg/L) 370.62		Dichlorobromo- methane (μg/L) 112.46		Chlorodibromo- methane (μg/L) 210.40		Bromoform (μg/L)	
								21	5.47
sample interval (min)		Residua I concent ration	% removal	Residua I concent ration	% removal	Residua I concent ration	% removal	Residua I concent ration	% removal
1		150.03	59.52	43.20	61.60	99.66	52.63	76.31	64.58
2		141.21	61.90	42.37	62.38	95.22	54.74	74.94	65.22
3		132.38	64.28	38.71	65.38	84.16	60.00	65.57	69.57
	Average		61.90		63.16		55.79		66. <mark>46</mark>

Ref: Thacker et.al., Int. Jour. of Pest., People & Nature, 2000

Water Filter for Removal of Trihalomethanes

(8)

(9)

Details of the Unit

 Capable of removing trihalomethanes, viz., chloroform,bromodichloromethane, bromochloromethane and bromoform at the concentrations levels below 200 µg L⁻¹ from chlorinated drinking water available through tap water supply in houses

- Tap attachable
- It gives an uninterrupted water supply
 - Retains the potability of final water

· Useful for a small to medium family at a household level

Easy to operate by unskilled persons

- (1) Inlet for raw water
- ⁽²⁾ Rubber tube
- (3) Stopper with valve
- (4) Spiral coil
- ⁽⁵⁾ UV lamp
- 6) Clamp to hold UV
 - wer supply

- Outlet for treated water
- Wooden chamber
- ⁽¹⁰⁾ Clamp to hold spiral coil upper part
- ⁽¹¹⁾ Clamp to hold spiral coil lower part
- ⁽¹²⁾ Shutter for wooden chamber
- (13) Handle attached to wooden chamber for the
- (14) Shutter Provision opening in the wooden chamber for
- (15) the inlet Provision opening in the wooden chamber for
 - the outlet

Ref: Thacker et.al, Ind.Journ. of Environ. Hlth., 1998

Conclusion

I. Poly aluminum chloride (PAC) as a coagulant

In water treatment using conventional coagulation method, alum can be replaced by PAC

- 90% reduction in sludge formation
- Minimization of TDS
- Al carry over in effluent reduce
- Do not contribute to THMs formation

II. Chlorine as a disinfectant

A optimum chlorine dose for disinfection must be advocated to achieve a balance between both microbiological quality and formation of trihalomethanes in drinking water. However, the microbiological quality must always take precedence.

Action needs to be taken

 Formulation of national health-based standards for Trihalomethane levels in drinking water

- The WHO and EPA standards could easily be used as a starting point
- Approach to Trihalomethane formation in chlorinated water safety standard should be based on Indian environmental regulation
- Standards should be set at the level of detection
- The norms should be based on scientific studies and should be achievable
- Formulated standards should be made legally enforceable.

